Rapid Filters and Guided Gregorieff Forcing

David Chodounský Charles University in Prague

January 31, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

A filter \mathcal{F} is a *p*-filter if for each $D \in [\mathcal{F}]^{\omega}$ there exists $p \in \mathcal{F}$ such that $p \subseteq^* d$ for each $d \in D$. The set *p* is called *pseudointersection* of *D*. An ideal \mathcal{I} , for which the dual filter \mathcal{I}^* is an *p*-filter, is *p*-ideal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A filter \mathcal{F} is a *p*-filter if for each $D \in [\mathcal{F}]^{\omega}$ there exists $p \in \mathcal{F}$ such that $p \subseteq^* d$ for each $d \in D$. The set *p* is called *pseudointersection* of *D*. An ideal \mathcal{I} , for which the dual filter \mathcal{I}^* is an *p*-filter, is *p*-ideal.

(日) (日) (日) (日) (日) (日) (日)

Definition

Let \mathcal{I} be an ideal on P(A). \mathcal{I} is an *tall* ideal if for each $b \in [P(A)]^{\omega}$ there exist some $a \in \mathcal{I} \cap [b]^{\omega}$.

Lemma (M. Talagrand)

For a filter \mathcal{F} in $P(\omega)$ the following are equivalent:

- 1. \mathcal{F} is non-meager subset of $P(\omega)$.
- 2. \mathcal{F} is unbounded (i.e. enumerating functions of sets in \mathcal{F} are unbounded subset of (${}^{\omega}\omega, <^*$).)
- 3. For each decomposition of $\omega = \bigcup I_n$ into intervals there is a set $F \in \mathcal{F}$ such that $F \cap I_n = \emptyset$ for infinitely many intervals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma (M. Talagrand)

For a filter \mathcal{F} in $P(\omega)$ the following are equivalent:

- 1. \mathcal{F} is non-meager subset of $P(\omega)$.
- 2. \mathcal{F} is unbounded (i.e. enumerating functions of sets in \mathcal{F} are unbounded subset of (${}^{\omega}\omega, <^*$).)
- 3. For each decomposition of $\omega = \bigcup I_n$ into intervals there is a set $F \in \mathcal{F}$ such that $F \cap I_n = \emptyset$ for infinitely many intervals.

Lemma (A. Miller ?)

For a filter \mathcal{F} in $P(\omega)$ the following are equivalent:

- 1. \mathcal{F} is rapid.
- 2. Enumerating functions of sets in \mathcal{F} are dominating family.
- There exist an increasing function f ∈ ^ωω such that for every sequence {t_i : t_i ∈ [ω]^{<ω}, i ∈ ω} there exists some F ∈ F such that |F ∩ t_i| < f(i) for each i ∈ ω.

Definition (Gregorieff's forcing) Let \mathcal{F} be a filter on ω . Put

$$G(\mathcal{F}) = (\{g: I
ightarrow 2; I \in \mathcal{F}^*\}, \supset).$$

The forcing notion $G(\mathcal{F})$ is called *Gregorieff's forcing*.

Definition (Gregorieff's forcing) Let \mathcal{F} be a filter on ω . Put

$$G(\mathcal{F}) = (\{g: I
ightarrow 2; I \in \mathcal{F}^*\}, \supset).$$

The forcing notion $G(\mathcal{F})$ is called *Gregorieff's forcing*.

Definition (Guided Gregorieff's forcing)

Let $\mathcal{T} = \{T_{\alpha} : T_{\alpha} \in [\omega]^{\omega}, \alpha \in \omega_1\}$ be a strictly increasing tower, i.e. $T_{\alpha} \subset^* T_{\beta}$ and $|T_{\beta} \setminus T_{\alpha}| = \omega$ for $\alpha < \beta \in \omega_1$. Denote $\mathcal{A} = \{A_{\alpha} = T_{\alpha+1} \setminus T_{\alpha}, \alpha \in \omega_1\}$. For $F = \{f_{\alpha} : A_{\alpha} \to 2\}$ the forcing notion $P(\mathcal{T}, F)$ consists of pairs (g, β) where $\beta \in \omega_1$ and g is a function with domain $D(g) =_* T_{\beta}$ to 2. Moreover $(g, \beta) \in P(\mathcal{T}, F)$ iff $g \upharpoonright A_{\alpha} =_* f_{\alpha}$ for each $\alpha < \beta$. The ordering is reversed inclusion, $(g, \beta) \leq (h, \gamma)$ iff $h \subseteq g$.

Lemma

- Let *F* be a non-meager p-filter on ω. Then the Gregorieff's forcing G(*F*) is proper and ^ωω bounding.
- Let *T* be a strictly increasing tower of size ω₁ which generates a non-meager ideal. Then P(*T*, F) is a proper ^ωω bounding forcing notion for each choice of F.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

- Let *F* be a non-meager p-filter on ω. Then the Gregorieff's forcing G(*F*) is proper and ^ωω bounding.
- Let *T* be a strictly increasing tower of size ω₁ which generates a non-meager ideal. Then P(*T*, F) is a proper ^ωω bounding forcing notion for each choice of F.

Lemma

- 1. Let \mathcal{F} be a rapid p-filter on ω . Then the Gregorieff's forcing $G(\mathcal{F})$ has Sacks property.
- 2. Let T be a strictly increasing tower of size ω_1 such that the filter F dual to the ideal generateted by T is rapid. Then the forcing P(T, F) has Sacks property for each choice of F.

Definition (*p*-filter game)

Let \mathcal{F} be a filter in $P(\omega)$ containing no finite sets. The following game is called *p*-filter game $G_{\mathcal{F}}$. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $s_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{s_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition (*p*-filter game)

Let \mathcal{F} be a filter in $P(\omega)$ containing no finite sets. The following game is called *p*-filter game $G_{\mathcal{F}}$. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $s_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{s_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

Lemma (Laflamme)

 \mathcal{F} is a non-meager p-filter in $P(\omega)$ if and only if player I has no winning strategy in game $G_{\mathcal{F}}$.

Lemma

Let \mathcal{F} be a rapid p-filter. There exists an increasing function $f \in {}^{\omega}\omega$ such that for each strategy of player I for the p-filter game $G_{\mathcal{F}}$ there exists some sequence $\{s_i : |s_i| < f(i), i \in \omega\}$ of moves of player II which beats this strategy.

Definition (strong-Q-sequence, J. Steprans)

Let \mathcal{A} be a subset of a Boolean algebra A. \mathcal{A} is a *strong-Q-sequence* in A if the following holds true: For every $F : \mathcal{A} \to A$ such that $F(a) \leq a$ there exists $c \in A$ such that $c \land a = F(a)$ for each $a \in \mathcal{A}$.

Fact

Every strong-Q-sequence in A is an antichain and if A is κ -complete than the converse is also true for antichains of size less than κ .

(日) (日) (日) (日) (日) (日) (日)

 $\mathcal{A}^{\perp} = \{ x \in \mathcal{A} : x \land a = 0 \text{ for each } a \in \mathcal{A} \}.$

Lemma (J. Steprans)

Let A and B be Boolean algebras. Suppose that $\mathcal{A} \subset A$ and $\mathcal{B} \subset B$ are strong-Q-sequences. Suppose furthermore that there is a bijection $\Psi : \mathcal{A} \to \mathcal{B}$ such that $A \upharpoonright a$ is isomorphic to $B \upharpoonright \Psi(a)$ for each $a \in \mathcal{A}$. Then A/\mathcal{A}^{\perp} is isomorphic to B/\mathcal{B}^{\perp} .

Proof.

For each $a \in \mathcal{A}$ fix an isomorphism $\psi_a : A \upharpoonright a \to B \upharpoonright \Psi(a)$. For $x \in B$ and $a \in \mathcal{A}$ put $G_x(a) = \psi_a^{-1}(x \land \Psi(a))$. Define isomorphism $\theta : B/\mathcal{B}^{\perp} \to A/\mathcal{A}^{\perp}$ by the rule $\theta(x) \land [a] = [G_x(a)]$ for each $a \in \mathcal{A}$.

Definition (strong-*Q*-sequence of size ω_1 in $P(\omega)/fin$)

 $\mathcal{A} = \{A_{\alpha} : A_{\alpha} \in [\omega]^{\omega}, \alpha \in \omega_1\}$ is a *strong-Q-sequence* (of size ω_1) iff for each $F = \{f_{\alpha} : A_{\alpha} \to 2\}$ there exists $f_F : \omega \to 2$ such that $f_F \upharpoonright A_{\alpha} =_* f_{\alpha}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition (strong-*Q*-sequence of size ω_1 in $P(\omega)/fin$)

 $\mathcal{A} = \{A_{\alpha} : A_{\alpha} \in [\omega]^{\omega}, \alpha \in \omega_1\}$ is a *strong-Q-sequence* (of size ω_1) iff for each $F = \{f_{\alpha} : A_{\alpha} \to 2\}$ there exists $f_F : \omega \to 2$ such that $f_F \upharpoonright A_{\alpha} =_* f_{\alpha}$.

Definition (*Q*-set of size ω_1 in $P(\omega)$)

 $\mathcal{A} = \{ \mathcal{A}_{\alpha} : \mathcal{A}_{\alpha} \in [\omega]^{\omega}, \alpha \in \omega_1 \} \text{ is a } Q\text{-set (of size } \omega_1) \text{ iff for each } F = \{ f_{\alpha} : \mathcal{A}_{\alpha} \to 2, f_{\alpha} \text{ constant} \} \text{ there exists } f_F : \omega \to 2 \text{ such that } f_F \upharpoonright \mathcal{A}_{\alpha} =_* f_{\alpha}.$

(日) (日) (日) (日) (日) (日) (日)

Corollary

If a strong-Q-sequence of size ω_1 in $P(\omega)/fin$ exists, then $2^{\omega} = 2^{\omega_1}$.

Example

Pick B_{α} , $\alpha \in \omega_1$ distinct maximal branches through ${}^{<\omega}2$. These B_{α} 's (as sets of nodes) form an AD system which is not a strong-*Q*-sequence. (Put $f_{\alpha}(s) = i$ iff $s \{i\} \in B_{\alpha}$.) Note that $MA_{\omega_1}(\sigma - centered)$ implies that $\{B_{\alpha}, \alpha \in \omega_1\}$ is a *Q*-set.

(ロ) (同) (三) (三) (三) (○) (○)

Example

Pick B_{α} , $\alpha \in \omega_1$ distinct maximal branches through ${}^{<\omega}2$. These B_{α} 's (as sets of nodes) form an AD system which is not a strong-*Q*-sequence. (Put $f_{\alpha}(s) = i$ iff $s \in B_{\alpha}$.) Note that $MA_{\omega_1}(\sigma - centered)$ implies that $\{B_{\alpha}, \alpha \in \omega_1\}$ is a *Q*-set.

Theorem (J. Steprans)

 $MA_{\omega_1}(\sigma-linked)$ implies that there is no strong-Q-sequence of size ω_1 in $P(\omega)/fin$.

Theorem (J. Steprans)

It is consistent that there exist a strong-Q-sequence of size ω_1 in $P(\omega)/fin$.

Katowice problem

Question (Katowice problem) Is it consistent with ZFC that $P(\omega)/fin \simeq P(\omega_1)/fin$?

Katowice problem

Question (Katowice problem)

Is it consistent with ZFC that $P(\omega)/fin \simeq P(\omega_1)/fin$?

Theorem (B. Balcar)

If $P(\omega)/\text{fin} \simeq P(\omega_1)/\text{fin}$ then $\mathfrak{d} = \omega_1$ (and $2^{\omega} = 2^{\omega_1}$).

Proof.

Fix a homeomorphism $h: P(\omega_1)/fin \to P(\omega)/fin$. $\omega_1 = \bigcup \{B_n, n \in \omega\}$, where $|B_n| = \omega_1, B_n \cap B_m = \emptyset$ for $n \neq m \in \omega$ Fix $\{A_n, n \in \omega\}$ such that $\omega = \bigcup \{A_n, n \in \omega\}, [A_n] = h([B_n])$ and $A_n \cap A_m = \emptyset$ for $n \neq m \in \omega$. Let $b: \omega \to \omega \times \omega$ be a bijection, $b''(A_n) = \{n\} \times \omega$. For $\alpha < \omega_1$ fix D_α such that $[D_\alpha] = h([\omega_1 \setminus \alpha])$. Put $f_\alpha(n) = \min\{i \in \omega : (n, i) \in b''(D_\alpha)\}$. $\{f_\alpha : \alpha \in \omega_1\}$ is a ω_1 -scale.

It is a tall ideal.

It is a tall ideal.

It is generated by an increasing ω_1 sequence

$$\{t_{\alpha} = [\alpha \cdot \omega] : \alpha \in \omega_1\},\$$

and $\{t_{\alpha+1} - t_{\alpha} : \alpha \in \omega_1\}$ is a strong-*Q*-sequence.

It is a tall ideal.

It is generated by an increasing ω_1 sequence

$$\{t_{\alpha} = [\alpha \cdot \omega] : \alpha \in \omega_1\},\$$

and $\{t_{\alpha+1} - t_{\alpha} : \alpha \in \omega_1\}$ is a strong-*Q*-sequence.

It has has nonempty intersection with all *p*-ultrafilters.

Fact

Every p-ultrafilter \mathcal{F} on ω_1 contains a countable set.

Proof.

 \mathcal{F} in not σ -complete so fix $D \in [\mathcal{F}]^{\omega}$ such that $\bigcap D = \emptyset$. There exists $p \in \mathcal{F}$ such that $p \subseteq^* d$ for each $d \in D$. This implies that $|p| = \omega$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

It is a tall ideal.

It is generated by an increasing ω_1 sequence

$$\{t_{\alpha} = [\alpha \cdot \omega] : \alpha \in \omega_1\},\$$

and $\{t_{\alpha+1} - t_{\alpha} : \alpha \in \omega_1\}$ is a strong-*Q*-sequence.

It has has nonempty intersection with all *p*-ultrafilters.

Definition

An increasing tower T in $P(\omega)$ is a *C*-tower iff the following holds.

- 1. $\mathcal{T} = \{T_{\alpha} : \alpha \in \omega_1\}$
- 2. \mathcal{T} generates a tall ideal.
- 3. $\{T_{\alpha+1} \setminus T_{\alpha} : \alpha \in \omega_1\}$ is a strong-*Q*-sequence.
- 4. T has nonempty intersection with each nonprincipal p-ultrafilter.

Fact If $P(\omega)/fin \simeq P(\omega_1)/fin$ then there is a C-tower.

Theorem

It is consistent that there exist a C-tower and $v = \omega_1$.

Start in a model of ZFC + $2^{\omega} = \omega_1$, $2^{\omega_1} = \omega_2$. Pick $\mathcal{T} = \{T_{\alpha} : T_{\alpha} \in [\omega]^{\omega}, \alpha \in \omega_1\}$ a strictly increasing tower; $T_{\alpha} \subset^* T_{\beta}$ and $|T_{\beta} \setminus T_{\alpha}| = \omega$ for $\alpha < \beta \in \omega_1$. Suppose moreover that \mathcal{T} generates a non-meager ideal and denote \mathcal{F} the dual non-meager *p*-filter, $\mathcal{A} = \{A_{\alpha} = T_{\alpha+1} \setminus T_{\alpha}, \alpha \in \omega_1\}$. The desired model will be obtained by countable support iteration of length ω_2 of proper $^{\omega}\omega$ bounding forcing notions. Start with $G(\mathcal{F} \times \emptyset)$ and in step $\beta \in \omega_2$ force with $P(\mathcal{T}, F^{\beta})$ for suitably chosen $F^{\beta} = \{f_{\alpha} : A_{\alpha} \to 2, \alpha \in \omega_1\}$.

Note that in the resulting model

$$\mathcal{P}(\omega_1)/\{t_{lpha+1}-t_lpha:lpha\in\omega_1\}^\perp\simeq\mathcal{P}(\omega)/\mathcal{A}^\perp.$$

where
$$\{t_{\alpha} = [\alpha \cdot \omega] \text{ for } \alpha \in \omega_1\}$$

Theorem (H. Judah, S. Shelah)

It is consistent that there exists a Q-set of size ω_1 and a set of reals of size ω_1 which has not measure zero.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem (H. Judah, S. Shelah)

It is consistent that there exists a Q-set of size ω_1 and a set of reals of size ω_1 which has not measure zero.

To prove this result we need a forcing which introduces a Q-set and has Sacks property. This can be easily done by iterating Guided Gregorieff forcing notions $P(\mathcal{T}, F^{\beta})$ where \mathcal{T} generates a rapid ideal (we can even get a strong-Q-sequence).

(日) (日) (日) (日) (日) (日) (日)

- J. Steprans, Strong Q-sequences and variations on Martins Axiom, Canad. J. Math. 37 (1985) no. 4, 730–746.
- W. W. Comfort, Compactifications: recent results from several countries, Topology Proc. 2 (1977), no. 1, 61–87 (1978).
- H. Judah, S. Shelah, *Q-sets, Sierpiński sets, and rapid filters*, Proc. Amer. Math. Soc. **111** (1991) 821–832.
- P. Nyikos, *Cech-Stone remainders of discrete spaces*, in: Open Problems in Topology II, Elliott Pearl, ed., Elsevier B.V., Amsterdam, 2007, 207–216.